Close Range Photogrammetry and Neural Network for Facial Recognition

نویسنده

  • Shatha Kadhim
چکیده

Recently, there has been an increasing interest in utilizing imagery in different fields such as archaeology, architecture, mechanical inspection and biometric identifiers where face recognition considered as one of the most important physiological characteristics that is related to the shape and geometry of the faces and used for identification and verification of a person's identity. In this study, close range photogrammetry with overlapping photographs were used to create a three dimensional model of human face where coordinates of selected object points were exatrcted and used to caculate five different geometric quantities that been used as biometric authentication for uniquely recognizing humans. Then , the probabilistic neural networks, with their remarkable ability to derive meaning from complicated or imprecise data, utilize the extracted geometric quantities to find patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. Quantifiable dimensions that based on geometric attributes rather than radiometric characteristics has been successfully extracted using close range photogrammetry. the Probabilistic Neural Network (PNN) as a kind from radial basis network group has been used to specify a geometrics parameters for face recognition where the designed recognition method is not effected by face gesture or color and has lower cost compared with other techniques. This method is reliable and flexible with respect to the level of detail that describe the human surface. Experimental results using real data proved the feasibility and the quality of the suggested approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Implementation of an Intelligent Photogrammetric System for Control and Guidance of Reconstructive Surgery

The digital image contains efficient and useful information which enables measurement and data acquisition. One of the methods that facilitate measuring and interpreting objects, using the image solely, is close-range photogrammetry. Among the various fields of science, whenever a precise measurement is required, this approach can be applied. One of these fields is Medical Sciences that due to ...

متن کامل

Face Detection with methods based on color by using Artificial Neural Network

The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...

متن کامل

Evaluation of Close-Range Photogrammetric Technique for Deformation Monitoring of Large-Scale Structures: A review

Close-range photogrammetry has been used in many applications in recent decades in various fields such as industry, cultural heritage, medicine and civil engineering. As an important tool for displacement measurement and deformation monitoring, close-range photogrammetry has generally been employed in industrial plants, quality control and accidents. Although close-range photogrammetric applica...

متن کامل

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012